8 Python Basics Numpy Part III
Thanks for watching the video.
Also I would like to introduce you to our new course on udemy if interested. "Learn Python using Amazon SageMaker".Do try this URL: https://www.udemy.com/course/learn-python-using-amazon-sagemaker/?couponCode=583FD5DF08490CEEDFD0
What is NumPy?
NumPy is a Python library for scientific computing. NumPy stand for Numerical Python.
Data manipulation in Python is nearly synonymous with NumPy array manipulation.
NumPy, short for Numerical Python, is the fundamental package required for high performance scientific computing and data analysis. It is the foundation on which nearly all of the higher-level tools in this book are built. Here are some of the things it provides:
1.ndarray, a fast and space-efficient multidimensional array providing vectorized arithmetic operations and sophisticated broadcasting capabilities
2.Standard mathematical functions for fast operations on entire arrays of data without having to write loops
3.Tools for reading / writing array data to disk and working with memory-mapped files
4.Linear algebra, random number generation, and Fourier transform capabilities
5.Tools for integrating code written in C, C++, and Fortran
The last bullet point is also one of the most important ones from an ecosystem point of view. Because NumPy provides an easy-to-use C API, it is very easy to pass data to external libraries written in a low-level language and also for external libraries to return data to Python as NumPy arrays. This feature has made Python a language of choice for wrapping legacy C/C++/Fortran codebases and giving them a dynamic and easy-to-use interface.
While NumPy by itself does not provide very much high-level data analytical functionality, having an understanding of NumPy arrays and array-oriented computing will help you use tools like pandas much more effectively.
Python Numpy
Numpy is a general-purpose array-processing package. It provides a high-performance multidimensional array object, and tools for working with these arrays. It is the fundamental package for scientific computing with Python.
Besides its obvious scientific uses, Numpy can also be used as an efficient multi-dimensional container of generic data.
Array in Numpy
Array in Numpy is a table of elements (usually numbers), all of the same type, indexed by a tuple of positive integers. In Numpy, number of dimensions of the array is called rank of the array. A tuple of integers giving the size of the array along each dimension is known as shape of the array. An array class in Numpy is called as ndarray. Elements in Numpy arrays are accessed by using square brackets and can be initialized by using nested Python Lists.
Что делает видео по-настоящему запоминающимся? Наверное, та самая атмосфера, которая заставляет забыть о времени. Когда вы заходите на RUVIDEO, чтобы посмотреть онлайн «8 Python Basics Numpy Part III», вы рассчитываете на нечто большее, чем просто загрузку плеера. И мы это понимаем. Контент такого уровня заслуживает того, чтобы его смотрели в HD 1080, без дрожания картинки и бесконечного буферизации.
Честно говоря, Rutube сегодня — это кладезь уникальных находок, которые часто теряются в общем шуме. Мы же вытаскиваем на поверхность самое интересное. Будь то динамичный экшн, глубокий разбор темы от любимого автора или просто уютное видео для настроения — всё это доступно здесь бесплатно и без лишних формальностей. Никаких «заполните анкету, чтобы продолжить». Только вы, ваш экран и качественный поток.
Если вас зацепило это видео, не забудьте взглянуть на похожие материалы в блоке справа. Мы откалибровали наши алгоритмы так, чтобы они подбирали контент не просто «по тегам», а по настроению и смыслу. Ведь в конечном итоге, онлайн-кинотеатр — это не склад файлов, а место, где каждый вечер можно найти свою историю. Приятного вам отдыха на RUVIDEO!
Видео взято из открытых источников Rutube. Если вы правообладатель, обратитесь к первоисточнику.