AdaBoost Implementation in Python: Code Walkthrough | Machine Learning in Tamil смотреть онлайн
AdaBoost, short for Adaptive Boosting, is a popular ensemble learning algorithm that combines multiple weak learners to create a strong learner. The weak learners in AdaBoost are typically decision trees with a depth of one, also known as decision stumps. The algorithm iteratively trains weak learners on different subsets of the training data, adjusting the weights of the samples to focus on the instances that were misclassified in previous iterations.
Here's a step-by-step explanation of how AdaBoost works:
Initialize the weights: Assign equal weights to all training examples in the initial round. The sum of weights is typically set to 1.
For each iteration (t=1, 2, 3, ... T):
a. Train a weak learner: Train a weak learner (e.g., decision stump) on the training data using the current weights.
b. Evaluate the weak learner: Calculate the weighted error rate (epsilon) of the weak learner by summing the weights of misclassified examples.
c. Compute the weak learner's weight: Compute the weak learner's weight (alpha) based on the error rate. Higher error rates result in lower weights.
d. Update the weights: Adjust the weights of the training examples. Increase the weights of misclassified examples and decrease the weights of correctly classified examples.
e. Normalize the weights: Normalize the weights so that their sum is 1.
Combine the weak learners: After T iterations, AdaBoost combines the weak learners into a strong learner by assigning weights to them based on their performance (alpha values). The final model is usually obtained by weighted majority voting, where the more accurate weak learners have higher weights.
Predict: To make predictions on new data, AdaBoost combines the predictions of all the weak learners, weighted by their respective alpha values.
Here are some important considerations when implementing AdaBoost:
Choice of weak learner: Decision stumps are commonly used as weak learners in AdaBoost, but you can experiment with other types of weak learners as well.
Number of iterations (T): The number of iterations determines the number of weak learners to be trained. It's typically a hyperparameter that needs to be tuned using cross-validation.
Weight update formula: There are different variations of the weight update formula used in AdaBoost, such as the exponential loss or the binomial deviance loss. The choice of the weight update formula affects the learning process.
Handling multi-class classification: AdaBoost can be extended to handle multi-class classification problems by using techniques like one-vs-rest or one-vs-one.
Overfitting: AdaBoost is prone to overfitting if the weak learners become too complex or if the number of iterations (T) is too large. Regularization techniques like early stopping or limiting the depth of weak learners can help mitigate overfitting.
Overall, AdaBoost is a powerful algorithm that leverages the strengths of multiple weak learners to build a robust predictive model. It has been widely used in various domains and has demonstrated excellent performance in many classification tasks.
Что делает видео по-настоящему запоминающимся? Наверное, та самая атмосфера, которая заставляет забыть о времени. Когда вы заходите на RUVIDEO, чтобы посмотреть онлайн «AdaBoost Implementation in Python: Code Walkthrough | Machine Learning in Tamil» бесплатно и без регистрации, вы рассчитываете на нечто большее, чем просто загрузку плеера. И мы это понимаем. Контент такого уровня заслуживает того, чтобы его смотрели в HD 1080, без дрожания картинки и бесконечного буферизации.
Честно говоря, Rutube сегодня — это кладезь уникальных находок, которые часто теряются в общем шуме. Мы же вытаскиваем на поверхность самое интересное. Будь то динамичный экшн, глубокий разбор темы от любимого автора или просто уютное видео для настроения — всё это доступно здесь бесплатно и без лишних формальностей. Никаких «заполните анкету, чтобы продолжить». Только вы, ваш экран и качественный поток.
Если вас зацепило это видео, не забудьте взглянуть на похожие материалы в блоке справа. Мы откалибровали наши алгоритмы так, чтобы они подбирали контент не просто «по тегам», а по настроению и смыслу. Ведь в конечном итоге, онлайн-кинотеатр — это не склад файлов, а место, где каждый вечер можно найти свою историю. Приятного вам отдыха на RUVIDEO!
Видео взято из открытых источников Rutube. Если вы правообладатель, обратитесь к первоисточнику.