Quadratic differentials and measured foliations on Riemann surfaces by Subhojoy Gupta
Program : Integrable? ?systems? ?in? ?Mathematics,? ?Condensed? ?Matter? ?and? ?Statistical? ?Physics
ORGANIZERS : Alexander Abanov, Rukmini Dey, Fabian Essler, Manas Kulkarni, Joel Moore, Vishal Vasan and Paul Wiegmann
DATE & TIME : 16 July 2018 to 10 August 2018
VENUE : Ramanujan Lecture Hall, ICTS Bangalore
This program aims to address various aspects of integrability and its role in the advancement of Mathematics, Mathematical Physics, Condensed Matter Physics and Statistical Mechanics. The scope of the proposed program is therefore highly interdisciplinary, being aimed at mathematicians and physicists who are working on different aspects of integrability. The purpose is to bring together experienced as well as young scientists, graduate students and postdoctoral fellows who are working on various aspect of quantum as well as classical systems in which integrability plays a paramount role.
Dates:
July 16 - July 27 (First Division: Integrable systems in Mathematics and Mathematical Physics)
July 30 - Aug 10 (Second Division: Integrable systems in Condensed Matter / Statistical Physics)
The above two divisions are only made just as a broad reference for gathering like-minded mathematicians and physicists. But, we aim to strongly encourage cross-disciplinary discussions throughout the 4 week program under the common theme of integrability.
During the first two weeks of the program, there is also a parallel meeting Quantum Fields, Geometry and Representation Theory and we expect fruitful interactions.
Topics to be discussed under the division of Mathematics and Mathematical Physics include (but not restricted to):
Constant Mean Curvature Surfaces (classical and discrete) and their Relation to Integrable Systems
Integrable systems and geometric asymptotics
Quantum Integrable Systems
Analytical methods for partial differential equations (PDEs) inspired by integrable systems
Applications of integrable PDEs in mathematical physics (for e.g, Benjamin-Ono, Nonlinear Schrodinger, Korteweg–de Vries equations)
Topics to be discussed under the division of Condensed Matter and Statistical Physics include (but not restricted to):
Nonequilibrium dynamics and transport: Integrability to many-body localization
Perturbed conformal and integrable field theories with applications to low dimensional strongly correlated systems
Bethe ansatz and applications to spin chains
Hydrodynamics and collective behavior of many body systems
Calogero, Lieb -Liniger, Yang-Gaudin models and their applications
There will also be some pedagogic lectures on the below topics:
Mathematics and Mathematical Physics:
A. Bobenko (TU Berlin) - “CMC Surfaces (classical and discrete) and their Relation to Integrable Systems”
David Smith (NUS, Yale) - “The Unified Transform Method for linear evolution equations”
Tom Trogdon (University of California-Irvine, USA) - “The computational theory of Riemann–Hilbert problems”
Paul Wiegmann (Chicago) - "Hofstadter problem: Integrability and Complexity"
Ritwik Mukherjee (NISER, Bubaneswar) - " Quantum Cohomology and WDVV equation"
Condensed Matter and Statistical Physics:
Fabian Essler (Oxford) - “Integrability out of equilibrium”
Joel Moore (Berkeley) - “Nonequilibrium dynamics and transport: Integrability to many-body localization”
Alexander Abanov (Simons Center, Stony Brook) - "Hydrodynamics, variational principles and integrability"
Alexios Polychornakos (CCNY-CUNY) - "Physics and Mathematics of Quantum and Classical Calogero models"
Fabio Franchini (University of Zagreb, Croatia) - "Basic Lectures on Bethe Ansatz"
CONTACT US : integrability2018 ictsresin
PROGRAM LINK :https://www.icts.res.in/program/integrability2018
Table of Contents (powered by https://videoken.com)
0:00:00 Integrable systems in Mathematics, Condensed Matter and Statistical Physics
0:00:10 Quadratic differentials and measures foliations on Riemann surfaces
0:01:45 Teich miller space
0:02:31 Marking: Homotopy class of identification with S
0:03:57 Fact
0:04:50 In general
0:08:33 Remarks
0:10:22 Quadratic differentials
0:12:11 Fact (Riemann-Roch)
0:12:59 Theorem (Wolf, Hitchin)
0:13:28 Definition
0:15:26 Eells-Sampson, Hartman, Al'ber Schoen-Yan, Sampson
0:16:50 Hopf differential of the Harmonic map
0:17:28 Idea of Proof
0:20:30 Remarks
0:22:32 The map Phi is not a symplectomorphism
0:26:37 Measured foliations - Recall
0:30:10 Example
0:36:46 Fact (Thurston)
0:38:23 Theorem (Hubbard-Masar)
0:39:13 Remarks
0:44:17 Conjecture
0:45:24 New results
0:50:32 Simplest example
0:56:02 Theorem (An-Wan)
0:56:49 Remarks
1:00:28 Theorem (G-Wolf)
Что делает видео по-настоящему запоминающимся? Наверное, та самая атмосфера, которая заставляет забыть о времени. Когда вы заходите на RUVIDEO, чтобы посмотреть онлайн «Quadratic differentials and measured foliations on Riemann surfaces by Subhojoy Gupta», вы рассчитываете на нечто большее, чем просто загрузку плеера. И мы это понимаем. Контент такого уровня заслуживает того, чтобы его смотрели в HD 1080, без дрожания картинки и бесконечного буферизации.
Честно говоря, Rutube сегодня — это кладезь уникальных находок, которые часто теряются в общем шуме. Мы же вытаскиваем на поверхность самое интересное. Будь то динамичный экшн, глубокий разбор темы от любимого автора или просто уютное видео для настроения — всё это доступно здесь бесплатно и без лишних формальностей. Никаких «заполните анкету, чтобы продолжить». Только вы, ваш экран и качественный поток.
Если вас зацепило это видео, не забудьте взглянуть на похожие материалы в блоке справа. Мы откалибровали наши алгоритмы так, чтобы они подбирали контент не просто «по тегам», а по настроению и смыслу. Ведь в конечном итоге, онлайн-кинотеатр — это не склад файлов, а место, где каждый вечер можно найти свою историю. Приятного вам отдыха на RUVIDEO!
Видео взято из открытых источников Rutube. Если вы правообладатель, обратитесь к первоисточнику.